HCIL(NGH)-ENV/2023/53

To, The Member Secretary M.P. Pollution Control Board Paryavaran Parisar, E-5, Arera Colony, Bhopal – 462016

HeidelbergCement India Limited

CIN: L26942HR1958FLC042301 Village and P. O. Narsingarh District Damoh, Madhya Pradesh 470675 Phone +91-7601-241301, 02 & 05 Fax +91-7601-241235 Website: www.mycemco.com

Date; 20.09.2023 Th; E-mail & XGN Upload

Sub.: Submission of Environment Statement Report (Form -V) for the period from Apr 2022 to Mar 2023 by M/s. Diamond Cements – DG Set 1500 KVA (Prop: Heidelberg Cement India Ltd.), P.O. Narsingarh, Distt. Damoh-470675 (M.P.)

Dear Sir,

Please find enclosed herewith the Environment Statement Report (Form-V) of M/s. Diamond Cements – DG Set 1500 KVA (Prop: Heidelberg Cement India Ltd.), P.O. Narsingarh, Distt. Damoh-470675 (M.P.)

This is submitted for your kind perusal please.

Thanking you with regards,

For M/s Diamond Cements (Prop: Heidelberg Cement India Ltd.)

Ashok Tiwari Head Environment (Unit Narsingarh, Damoh M.P.)

Copy To:

- The Zonal Officer (Central), Central Pollution Control Board, Parivesh Bhawan , Paryavaran Parisar, E-5 , Arera Colony, Bhopal, Madhya Pradesh 462016
- The Regional Officer
 M.P Pollution Control Board,
 Deen Dayal Nagar, Housing Board Colony, Sagar (MP)
- 3. Office Copy

Encl: Form V

ENVIRONMENT STATEMENT REPORT

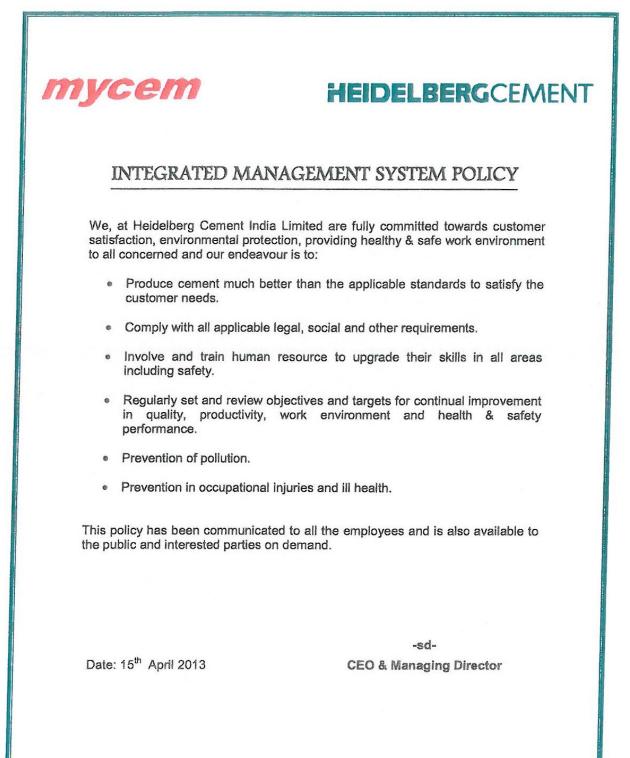
(FORM-V)

[YEAR 2022 - 2023]

SUBMITTED BY

HEIDELBERGCEMENT

M/S DIAMOND CEMENTS DG Set 1500 KVA (PROP. HEIDELBERGCEMENT INDIA LTD.) P.O. NARSINGARH DIST. DAMOH (M.P.) - 470675


DIAMOND CEMENTS – DG Set 1500 KVA (PROP. HEIDELBERGCEMENT INDIA LTD.) P.O. NARSINGARH DIST. DAMOH (M.P.) - 470675 (For the Financial year ending 31st March 2023)

SI. No.	Part	Description	
1	Integrated Manage	ement System Policy	
2	Introduction		
3	Part A	General Information	
4	Part B	Water & Raw Materials consumption	
5	Part C	Pollution Discharge to Environment/ Unit of output	
6	Part D	Part D Hazardous Waste	
7	Part E Solid Waste		
8	Part F	Characterizations of Hazardous Waste as well as Solid Waste & disposal practice	
9.	Part G	Impact of the Pollution Abatement Measures	
10.	Part H	Additional Measures / Investment Proposal for Environmental Protection	
11.	Part I	Any other particular in respect of environmental protection and abatement of pollution	

CONTENTS

ANNEXURES

S.No.	Annexure	Details	
1	Annexure-1	Ambient Air Quality Report	
2	Annexure-2	Stack Emission results	
3	Annexure-3	STP Treated Water Quality Report	
4	Annexure-4	Ambient Noise Level Monitoring	
5	Annexure-5	Details of Pollution Control Measures	
6	Annexure-6	Year wise plantation at Narsingarh	

INTRODUCTION

HeidelbergCement India Limited is a subsidiary of HeidelbergCement Group, Germany. The Company has its operations in Central India at Damoh (Madhya Pradesh), Jhansi (Uttar Pradesh) and in Southern India at Ammasandra (Karnataka). The Company entered India in 2006 with less than 3-million-ton capacity. Recently the company increased Its Capacity from 5.4 million tons to 6.26 million tons in 2020. M/s Diamond Cements (Prop: HeidelbergCement India Ltd) is presently producing 3.1 million metric tonnes per annum (MTPA) of clinker at its unit located at Narsingarh, in Damoh district of Madhya Pradesh. The clinker is produced in three Clinker Lines (Line 1, 2 and 3). HeidelbergCement India limited is committed to excel Environmental Sustainability by putting all engineering the best efforts to prevent environmental degradation, minimize the waste generation, resource conservation and reutilization of waste.

Man is a part of nature, and not separate or independent; at the same time, man is unique in the influence he has over nature. Man derives all his food, clothing, shelter, and other amenities from nature. In that process, if he does not take care to protect and cherish nature, but decrease or destroys, he will find that his own life and that of his children is in jeopardy. In the words of our late Prime Minister, Mrs. Indira Gandhi "It is said that, in country after country, progress should become synonymous with an assault on nature. The higher standard of living must be achieved without alienating our people from their heritage and without despoiling of its beauty, freshness and purity essential to our lives." The environment is now catch for all, the industry, the government, the people. Hence, it is joint responsibility to protect, preserve the environment and avoid the perishing the natural treasures. At this critical junction of time and efforts, the Indian industry has fulfilled its commitment in maintaining the environmental integrity. The next few pages of this Environment Statement Report (ESR) of HeidelbergCement India Limited is based on factual data and verified record, will present a picture of more optimism for environmental care than ever before.

ENVIRONMENTAL STATEMENT REPORT

[FORM-V]

(See rule 14)

PART-A

(i)	Name and address of the owner/ occupier: of the industry, operation, or process	Mr. Sunil Kumar (Sr. Vice President- Unit Head) Diamond Cement – DG Set 15 KVA (Prop. HeidelbergCement India Ltd.) P.O. NARSINGARH DIST. DAMOH (M.P.) – 470 675
(ii)	Industry category	Cement- LARGE SCALE
(iii)	Production capacity	1500 KVA
(iv)	Year of establishment	2019
(vi)	Date of the last Environmental statement submitted	30 th Aug 2022

PART-B

Water and Raw Material Consumption

	Process water consumption per unit of products output		
Name of products	During the previous financial year	During the current financial year	
	(1)	(2)	
(1) Power	NA	NA	

(ii) Raw material consumption

* Name of raw	* Name of raw Name of	Consumption of raw material per unit of output		
materials products		During the previous financial year (KL/KWH)	During the current financial year (KL/KWH)	
HSD	Power	0.0002	0.00026	

PART-C

Pollution discharged to environment/unit of output (Parameters as specified in the consent issued)

(i) Pollutants	Quantity of pollution discharged (mass/day)	Concentrations of pollutants in discharges (mass/volume)	Percentage of variation from prescribed standards with reasons
(a) Air	Ambient Air Quality Monitoring Report attached as Annexure-1 Stack Emission Monitoring Report attached as Annexure-2		
(b) Water	STP Water Quality Monitoring Report attached as Annexure-3		

PART-D Hazardous Wastes

[As specified under Hazardous Wastes (Management, Handling and Transboundary Movement) Rules, 2008]

Hazardous Wastes		Total Quantity		
		During the Previous Financial year (MT)	During the Current Financial year (MT)	
	(a) Spent/ Used Oil (Category 5.1)	NA	NA	
(a) From Process	(b) Residue containing waste oil (Category 5.2)	NA	NA	
(b) From Pollution control Facilities	NA	NA	NA	

* Hazardous waste is generated from hydraulic movement of machines, oiling/ greasing etc., which is being sold to registered recycler.

PART-E			
Solid V	Vastes		

	Total Quantity (Solid waste) disposed		
	During the previous financial year (%)	During the current financial year (%)	
(a) From process	NA	NA	
(b) From pollution control facility	NA	NA	
(c) Quantity recycled or re- utilized	NA NA		
	Total Quantity (E- waste) disposed		
	During the previous financial year (MT) (MT)		

(a) *From Plant & Mines	5	2.26
-------------------------	---	------

* E-waste generation is including Clinker Plant, Grinding unit & Patharia Mines.

PART-F

Please specify the characteristics (in terms of composition of quantum) of Hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

No Hazardous Waste is being generated from DG Set because it is not in regular operation except an emergency D.G. During the generation of Hazardous waste vide Category 5.1 and 5.2, we will sold out through MPPCB registered recycler. Details given in Part D.

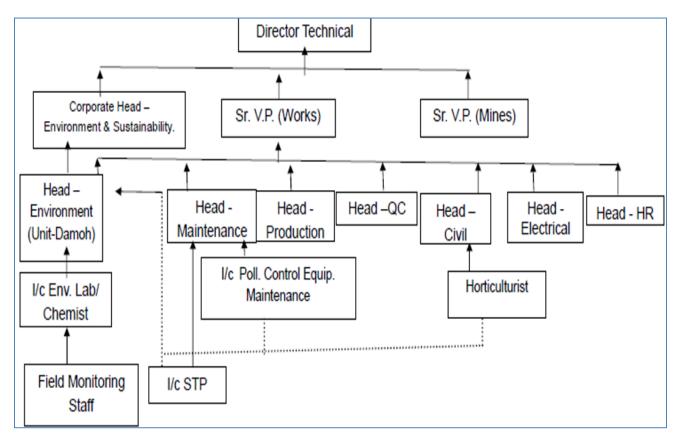
PART-G

Impact of pollution abatement measures taken on conservation of natural resources and on the cost of production.

Proper housekeeping is being maintained. Waste management & disposal is being maintained to avail any adverse impact on Environment.

PART-H

Additional measures/investment proposal for	Continuous efforts are being made to maintain the		
environmental protection including abatement of	environment clean Environment. Adequate		
pollution, prevention of pollution.	quantity of Pollution Control Equipment i.e. RABH		
	(Reverse Air Bag House), Hybrid Filter		
	(Combination of ESP and Bag House), ESP, Bag		
	House, Dust Collectors, Dust Suppression System,		
	Water Sprinkler, STP, Green Belt Development are		
	available for proper pollution control. List of		
	Pollution Control Devices given in Annexure -5.		

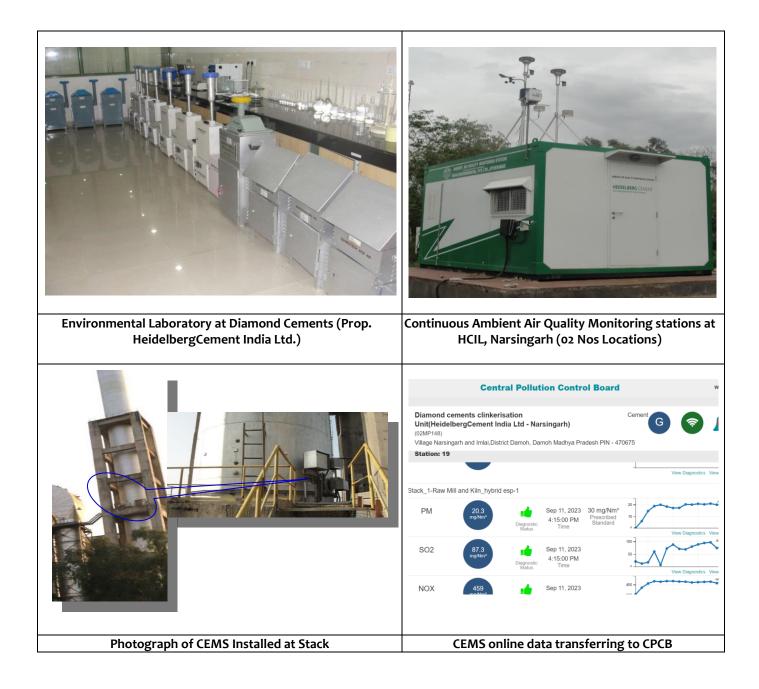

EXPENDITURE ON ENVIRONMENT MANAGEMENT IN 2022-23 & PROPOSED FOR 2023-24

S. No.	Details	Expense for 2022-23 in Rs. Lakhs (approx)	Expense for 2023-24 in Rs. Lakhs (approx)
	Stack and Ambient Air Quality Monitoring (Including Grinding Unit, Clinkerisation Unit Narsingarh, Limestone Mines Patharia)	29.9	32

2	Operation and maintenance of Sewage treatment plant	14.9	16
3	Continuous Ambient Air Quality Monitoring Station (CAAQMS) & Continuous Emission Monitoring System (CEMS)	20.6	22
4	Green belt Development and maintenance.	60.0	62
5	House Keeping Expenses	35.1	37
6	Awareness Program including Observing Environment Day/Ozone Day (Common for Clinkerisation unit, Grinding unit & mines)	0.20	0.50
7	Maintenance of Air Pollution Control Devices	72.1	78
8	Road Sweeping (manual) and through Auto sweeper	49.2	55
9	Maintenance of Rain water harvesting & construction of new RWHS	1.4	5
10	Municipal Waste Management System	14.1	15
11	Cost of Electricity consumed by Pollution control devices (Approx.)	619.9	650
12	Recurring cost of SNCR (Cost of Ammonium hydroxide)	13.3	15
13	Plastic waste co-processing cost	88.5	90

<u> Part – I</u>

Organization Structure


Facilities avalable in Environment Laboratory

at

Diamond Cements (Prop. HeidelbergCement India Ltd.)

(Environment Lab. is Common for Clinkerisation unit, Grinding unit & Mines)

Sl. No.	Instrument Name	Quantity		
1	Worktable& Chair (Set)	1		
2	Respirable Dust Sampler (R.D.S.)	4		
3	Fine Dust Sampler	4		
4	Stack Monitoring Kit	1		
5	NOx assembly	1		
6	Digital Barometer	1		
7	Noise Meter	1		
8	Personal Sampler	2		
9	Spectrophotometer	1		
10	Weighing Balance	2		
11	Kit (EC & Temp.)	1		
12	pH Meter	1		
13	Oven	1		
14	Water Bath	1		
15	Desiccator	1		
16	Hot Plat	1		
17	Refrigerator	1		
18	Computers	1		
19	Online Monitoring System			
A				
В	CEMS-Gaseous			
C	CEMS-Gaseous3CEMS-PM9			
20	20 Chemicals, Glasswares and Consumables			

Annex-1

		Ne	ar Hospi	tal		Ν	lear Gat	e of Min	e Pit No	1		Ne	ar STP A	rea			Near \	Worker (Colony	
Month	PM _{2.5}	PM ₁₀	SO2	NOx	CO	PM _{2.5}	PM ₁₀	SO2	NOx	CO	PM _{2.5}	PM ₁₀	SO ₂	NOx	CO	PM _{2.5}	PM ₁₀	SO ₂	NOx	CO
	(ug/m ³)																			
Apr-22	37	53	8	12	350	44	61	8	11	337	40	56	7	12	373	42	60	8	12	330
May-22	39	55	7	12	337	44	65	8	11	340	42	59	8	13	360	43	60	8	12	353
Jun-22	37	53	7	12	330	42	63	8	11	360	40	57	8	13	343	41	60	8	12	363
Jul-22	16	35	7	12	323	15	32	7	11	367	19	28	7	13	340	21	30	8	12	360
Aug-22	16	34	7	11	310	17	31	6	11	347	14	29	6	13	320	17	32	6	11	303
Sep-22	17	37	7	12	387	20	35	7	11	410	19	32	7	12	380	17	31	7	11	317
Oct-22	20	38	8	14	410	23	40	8	13	417	22	36	8	14	400	19	41	8	14	373
Nov-22	28	45	8	14	437	31	48	9	13	410	33	47	8	14	470	35	51	9	14	433
Dec-22	28	45	9	15	463	31	48	9	16	480	33	47	9	16	453	35	51	9	15	467
Jan-23	33	56	8	15	490	37	55	9	17	500	39	57	9	17	483	38	53	8	16	467
Feb-23	32	57	8	14	463	39	60	9	15	473	39	55	9	16	493	37	54	8	16	477
Mar-23	38	59	8	14	497	41	63	8	15	457	37	57	8	16	500	36	56	8	15	470
Min	16	34	7	11	310	15	31	6	11	337	14	28	6	12	320	17	30	6	11	303
Max	39	59	9	15	497	44	65	9	17	500	42	59	9	17	500	43	60	9	16	477
Avg	29	47	8	13	400	32	50	8	13	408	31	46	8	14	410	32	48	8	13	393

Ambient Air Quality Report (in µg/m3)

Annexure-2

Month		Kiln-1			Kiln-2			Kiln-3	
	PM (mg/Nm3)	SO₂ (mg/Nm3)	NO _x (mg/Nm3)	PM (mg/Nm3)	SO₂ (mg/Nm3)	NO _x (mg/Nm3)	PM (mg/Nm3)	SO ₂ (mg/Nm3)	NO _x (mg/Nm3)
Apr-22	18.9	22.8	670.2	22.2	17.5	609.9	25.1	22.8	559.6
May-22	17.9	15.7	685.1	23.9	12.0	713.2	21.6	19.5	671.0
Jun-22	*	*	*	21.8	10.7	496.0	20.7	15.8	393.9
Jul-22	*	*	*	22.3	22.0	584.0	21.0	12.7	471.7
Aug-22	*	*	*	24.2	23.9	534.2	19.2	18.1	469.5
Sep-22	*	*	*	17.8	25.5	487.7	22.6	21.7	484.6
Oct-22	*	*	*	20.2	24.7	473.2	18.6	23.9	472.0
Nov-22	*	*	*	*	*	*	17.4	23.3	452.1
Dec-22	25.4	23.7	634.8	20.2	23.4	516.6	18.77	14.5	469.2
Jan-23	*	*	*	25.31	21.4	567.88	21.64	18.5	483.4
Feb-23	15.3	22.3	447.1	19.6	34.6	442.6	23.5	12.1	427.2
Mar-23	26.1	38.3	652.0	23.4	41.5	632.2	15.1	34.6	481.7
Min	15.0	16.0	447.0	18.0	11.0	443.0	15.0	12.0	394.0
Max	26.0	38.0	685.0	25.0	42.0	713.0	25.0	35.0	671.0
Average	21.0	25.0	618.0	22.0	23.0	551.0	20.0	20.0	486.0

Stack Monitoring Report

*Not in Operation

Annexure-3

STP Treated Water Quality Monitoring Report

SI. No.	Parameters	Standard Limit	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23
1	рН	5.5-9.0	7.45	7.38	7.4	7.2	7.3	7.2	7.4	7.5	7.3	7.4	7.2	7.3
2	Total Suspended Solid	10	7.8	7.5	7.8	7.8	7.5	7.2	7.6	6.9	7.1	7.5	8	7.7
3	Total Dissolved Solid	-	350	345	341	340	331	290	265	320	330	320	481	450
4	Biochemical Oxygen Demand (3 days at 27 °C)	10	7.7	7.9	7.6	7.6	8.2	7.3	7.8	7.6	7.5	7.6	7.3	7.9
5	Chemical Oxygen Demand (COD)	50	24.4	25.8	26.2	26.2	27.6	27.3	26.2	23.5	24.4	24.6	26.8	27.5
6	Oil & Grease (O&G)	10	BDL	<1.0	BDL	<1.0								
7	Sodium Adsorption Ratio (SAR)	-	0.7	0.74	0.71	0.55	0.5	0.55	0.57	0.52	0.49	0.49	0.42	0.47
8	Fecal Coliform (FC) MPN/100ml	1000	90	87	81	65	72	70	71	69	76	79	72	74

*All values are in mg/L except pH

Annexure-4

Location \rightarrow	Near Hospital			of Mine Pit 0.1	Near S	TP Area	Near Wo	rker Colony
Month↓	Day Leq db(A)	Night Leq db(A)						
Apr-22	50.0	42.5	58.6	52.6	63.3	57.8	48.4	44.0
May-22	52.7	43.1	59.8	53.2	61.8	58.3	53.6	44.0
Jun-22	50.1	42.3	58.8	51.9	60.0	57.1	52.7	43.5
Jul-22	50.9	42.9	60.7	52.6	63.4	59.3	54.2	44.8
Aug-22	52.7	40.5	60.3	51.3	63.8	57.8	53.5	43.7
Sep-22	52.1	42.3	62.4	50.7	64.1	59.2	53.8	41.5
Oct-22	53.4	40.0	57.1	51.6	63.7	59.1	53.2	43.4
Nov-22	52.1	42.3	60.6	53.2	63.7	59.1	53.9	43.0
Dec-22	49.4	41.6	62.8	54.1	64.2	58.4	51.5	42.7
Jan-23	48.8	42.2	63.4	56.7	62.6	57.2	52.3	43.5
Feb-23	50.3	41.6	62.9	54.3	64.4	58.7	52.8	44.1
Mar-23	51.4	40.8	63.7	55.2	65.3	57.9	53.1	43.5
Avg	51.16	41.84	60.93	53.12	63.36	58.33	52.75	43.48

Ambient Noise Level Monitoring

Annexure-5

Details of Pollution Control Measures

Pollution Control Equipment - Line1 & Line 2

S.No.	Location of air pollution control equipment (main equipment/ transfer point)	Type of air pollution control equipment (bag house/ dust collector)
1	Lime stone crusher	Bag filter
2	Belt conveyor of lime stone crusher	Bag filter
3	Coal mill -1	Bag house
4	Coal mill -2	Bag house
5	Raw mill / kiln-1	Hybrid filter (esp+bag house)
6	Raw mill / kiln-2	Hybrid filter (esp+bag house)
7	Clinker cooler line-1	ESP
8	Clinker cooler line-2	ESP

9	Lime stone crusher (BC-7 TO BC-8)	Bag filter		
10	Lime stone crusher (BC-8 TO BC-11/ BC -8A)	Bag filter		
11	Coal crusher	Bag filter		
12	Pan conveyor to clinker silo (top of PC -5 area)	Bag filter		
13	Top of clinker silo (DBC 5/6)	Bag filter		
14	Raw mill-1 hopper	Bag filter		
15	Raw mill-2 hopper	Bag filter		
16	Laterite crusher	Bag filter		
17	Top of coal silo line – I	Bag filter		
18	Top of coal silo line – II	Bag filter		
19	Top of petro coke silo line – II	Bag filter		
20	Kiln feed line – I	Bag filter		
21	Kiln feed line – II	Bag filter		
22	Ph air lift line – I	Bag filter		
23	Top of raw mill silo 1 of line – I	Bag filter		
24	Top of raw mill silo 2 of line – I	Bag filter		
25	Top of raw mill silo of line – II	Bag filter		
26	Rotor of lime stone crusher	Water spray system		
27	Belt conveyor (BC-7) of lime stone crusher	Water spray system		
28	Transfer tower belt conveyor of laterite area	Water spray system		
29	Top of the clinker stock pile no.1	Bag filter		
30	Top of the clinker stock pile no.2	Bag filter		
31	Clinker loading in to the rope way	Bag filter		
32	Lime stone discharge point in to belt conveyor (bc-18) coming from roller press	Water spray system		
33	Roller press	Bag Filter		
34	Coal yard	Water sprinkler		
35	Coal handling circuit (from bc-28 to crusher no. 2)	Dust suppression system		
36	Clinker silo	Telescopic chute along with dust collector		
37	Pan conveyor to clinker silo (top of pc -5 area for dbc 1,2,5)	Bag filter		
38	Old Coal Crusher	Bag Filter		
39	Sewage treatment plant for domestic sewage	Sewage treatment plant (600 KLD)		
40	Green belt development in the premises	Green belt development		

Details of Pollution Control Equipment - New Line no.-3

S. No	Location of air pollution control equipment (main equipment/ transfer point)	Type of air pollution control equipment (bag house/ dust collector)		
1	Kiln/ raw mill filter & dust transport	Reverse air bag house		
2	Clinker cooler	Electrostatic precipitator		
3	Coal mill	Jet pulse collector		
4	Sec Lime Stone crusher	Dust collector		
5	Additives crushing and transport	Dust collector		
6	Limestone transport to storage	Dust collector		
7	Limestone transport to storage	Dust collector		
8	Bf250 limestone transport to storage	Dust collector		
9	Bf320 limestone transport to storage	Dust collector		
10	Bf430 limestone storage	Dust collector		
11	Bf470 limestone storage	Dust collector		
12	Bf620 limestone storage	Dust collector		
13	Bf670 limestone storage	Dust collector		
14	Bfo6o coal crushing and transport	Dust collector		
15	Bf090 coal crushing and transport	Dust collector		
16	Bf160 coal crushing and transport	Dust collector		
17	Bf220 coal crushing and transport	Dust collector		
18	Bf420 coal storage & transport	Dust collector		
19	Bf470 coal storage & transport	Dust collector		
20	Bf520 coal storage & transport	Dust collector		
21	Bf560 coal storage & transport	Dust collector		
22	Bf620 coal storage & transport	Dust collector		
23	Bf650 coal storage & transport	Dust collector		
24	Bf175 raw mill feed	Dust collector		
25	Bf275 raw mill feed	Dust collector		
26	Bf375 raw mill feed	Dust collector		
28	Bf475 raw mill feed	Dust collector		
29	Bfo20 raw mill building	Dust collector		
30	Bf290 raw mill building	Dust collector		
31	Bf530 raw mill building	Dust collector		
32	Bf640 raw mill filter & dust transport	Dust collector		
33	Bfo35 blending silo	Dust collector		
34	Bfo65 blending silo top	Dust collector		
35	Bf240 kiln feed	Dust collector		

38	Bf700 kiln feed, preheater top	Dust collector
39	Bf710 kiln feed, preheater top	Dust collector
40	Bf720 kiln feed, preheater top	Dust collector
41	Bf620 clinker cooler	Dust collector
42	Bf050 coal mill	Dust collector
43	Bf190 coal dosing and firing system	Dust collector
44	Bf290 coal dosing and firing system	Dust collector
45	Bf210 clinker transport,silo top	Dust collector
46	Bf131 loading spout	Dust collector
47	Bf132 loading spout	Dust collector
48	Bf133 loading spout	Dust collector
50	Bf134 loading spout	Dust collector
51	Bf135 loading spout	Dust collector
52	Bf136 loading spout	Dust collector
53	Bf137 loading spout	Dust collector
54	Bf450 clinker transport, off spec silo top	Dust collector

Annexure-6

Year wise plantation at Narsingarh

Year wise plantation details at Clinkerisation Unit Narsingarh

Year	Numbers of Trees planted
1983	150000
1984	20200
1985	38630
1986	69924
1987	42488
1988	64056
1989	40123
1990	102550
1991	24136
1992	68071
1993	48259
1994	27102
1995	25020
1996	23127
1997	39100
1998	19536
1999	15580
2000	6465
2001	13132
2002	9650
2003	25252
2004	11261
2005	8300
2006	7770
2007	12510
2008	3339
2009	5200
2010	3500
2011	6500
2012	10700
2013	8145
2014	5507

2015	4728
2016	4617
2017	5505
2018	5505
2019	4856
2020	2925
2021	7670
2022	3717
Total	994656

Total area of Clinkerisation Unit	: 191.77 Ha
Total area of Green Belt Development	:74.635
% Of green belt development	: 38.92%

Types of Species planted:

Seesham, Teak, Parasonia, Subabool, Gulmohar, Neem, Bamboo, Aam, Guava, Jamun, Jack fruit, Citrus spp., Ashok Pendula, Bottle Palm, Thuja, Pipal, Bargad, Eucalyptus Satparni, Amala, Rubber Plant, etc.

टिनांक- 06/06/2023

नरसिंहगढ़ सीमेंट फैक्ट्री में हुआ जागरूकता पखवाड़े का आयोजन

दमोह (नई दुनिया प्रतिनिधि)। म.प्र. प्रदुषण नियंत्रण बोर्ड, सागर एवं मायसेम सीमेंट नरसिंहगढ़ में फैक्ट्री प्रमुख सुनील कमार के मार्गदर्शन में मिशन लाइफ कार्यक्रम के अंतर्गत जागरुकता पखवाडा का आयोजन किया गया। कार्यक्रम के दौरान नरसिंहगढ स्थित फैक्ट्री में चित्रकला प्रतियोगिता एवं पौधारोपण का आयोजन किया गया। जिसमें पाँच वर्ष से 13 वर्ष तक के बच्चों ने बढ़े उत्साह से भाग लिया और चित्रकला के माध्यम से जल बचाओ एवं सिंगल यज प्लास्टिक को कहें ना आदि सात मुख्य विषयों पर जोर दिया।

कार्यक्रम के दौरान बोर्ड के अधिकारी ने बताया, कि भारत के प्रधानमंत्री द्वारा संयुक्त राष्ट्र संघ में लाइफस्टाइल फॉर द एनवायरनमेंट को एक कैंपन के रूप में चलाए जाने का आह्वान किया गया था। जिसके क्रियान्वयन के लिए मिशन लाइफ अन्तर्गत 18 मई से 5 जून तक पर्यावरण जन जागुति कार्यक्रम का आयोजन किया जा रहा है। जिसमें सात विषयों पर कंपनी या क्षेत्र में जनता के बीच जाकर जागृति देना है। मप्र प्रदुषण नियंत्रण बोर्ड, सागर के अधिकारी डॉ. आर. के जैन ने बच्चों को जल संरक्षण, ऊर्जा बचाव व सिंगल यूज प्लास्टिक

पौधा रोपण के दौरान मौजूद कंपनी के अधिकारीगण व अन्य लोग । •नईदुनिया

को कहें ना, सतत खाद्य प्रणाली, ई-वेस्ट एवं हेल्दी लाइफ स्टाइल एवं अपशिष्ट को कम करने के लिए उठाए जाने वाले कदमों के बारे में विस्तार से जानकारी दी। बच्चों के साथ-साथ अभिभावकों को भी पर्यावरण के प्रति जागरुकता कि शपथ दिलाई गई। जिससे हर व्यक्ति की आय स्रोत बढ़ने के साथ साथ बढ़ते प्रदूषण पर भी रोक लगेगी। हेडलबर्ग सीमेंट से पर्यावरण प्रमुख अशोक लाइफ स्टाइल फॉर द एनवायरनमेंट केंपन में बढ़चढ़ विजय श्रीवास्तव, अजय कुमार, तिवारी ने कंपनी की टिकाऊ प्रगति जैसे की अधिक कर हिस्सा लिया गया। इसके अतिरिक्त कंपनी के

प्रयोग एवं CO2 उत्सर्जन को कम करने के बारे में कार्यक्रम में प्रदूषण नियंत्रण बोर्ड विस्तुत व्याख्यान दिया। कंपनी अधिकारियों ने कहा कि एक बूंद पानी की कीमत बहुत अधिक है, यह किसी को जीवनदान दे सकता है। पृथ्वी का भूजल स्तर नीचे गिरता जा रहा है इसलिए जल संरक्षण के प्रति जागरूक होना बेहद जरूरी है।

बोर्ड अधिकारियों एवं कंपनी अधिकारी वर्ग द्वारा पानी संचय प्रणाली, नवीनकरण ऊर्जा का अधिकाधिक परिसर में बरगद जैसे वृक्षों का पौधारोपण किया गया। मौज़द रहे॥

के अधिकारी डॉ. आरके जैन, संजय जैन एवं हेडलबर्ग सीमेंट फैक्ट्री प्रमुख सुनील कुमार, आनंद प्रकाश, अखिलेश ताम्रकार, सुजीत मलिक, दीपक ठाकुर डीपी तिवारी, एसके जैन, सुनील मौर्य, बलवीर रावत आदि अधिकारी गण